Current position: Home >> PUBLICATIONS >> Co-authored papers
2011 so far
59. J. Yu, Y. Dai, Z. Zhang, T. Liu, S. Zhao, Q. He, P. Tan, Z. Shao, M. Ni, 2022, New nitrogen-doped graphitic carbon nanosheets with rich structural defects and hierarchical nanopores as efficient metal-free electrocatalysts for oxygen reduction reaction in Zn-Air batteries, Chemical Engineering Science, 259, 117816
58. Y. Wang, X.B. Zhu, P. Tan, Y.G. Wu, Z.N. Man, X.Y Wen, Z. Lu, 2022, Safe and Energy-Dense Flexible Solid-State Lithium−Oxygen Battery with a Structured Three-Dimensional Polymer Electrolyte, ACS Sustainable Chemistry & Engineering, 10, 4894−4903.
57. J. Yu, Y.W. Dai, Z.B Zhang, T. Liu, S.Y. Zhao, C. Cheng, P. Tan, Z.P. Shao, M. Ni, 2022, Tailoring structural properties of carbon via implanting optimal co nanoparticles in n‐rich carbon cages toward high‐efficiency oxygen electrocatalysis for rechargeable zn-air batteries, Carbon Energy, doi: 10.1002/cey2.171.
56. Y.W. Dai, J. Yu, P. Tan, C. Cheng, T. Liu, S.Y. Zhao, Z.P. Shao, T.S Zhao, M. Ni, Tianshou Zhao, Meng Ni, 2022, Microscale-decoupled charge-discharge reaction sites for an air electrode with abundant triple-phase boundary and enhanced cycle stability of Zn-Air batteries, Journal of Power Sources, 525, 231108.
55. Y.W. Dai, J. Yu, Z.B. Zhang, S. Zhai, C. Cheng, S.Y. Zhao, P. Tan, Z.P. Shao, M. Ni, 2021, Regulating the Interfacial Electron Density of La0.8Sr0.2Mn0.5Co0.5O3/RuOx for Efficient and Low-Cost Bifunctional Oxygen Electrocatalysts and Rechargeable Zn-Air Batteries, ACS Applied Materials & Interfaces, 13, 61098−61106.
54. Z. Wu, P.F. Zhu, J. Yao, S. Kurko, J.W. Ren, P. Tan, H.R. Xu, M. Ni, 2021, Methanol to power through high-efficiency hybrid fuel cell system: Thermodynamic, thermo-economic, and techno-economic (3T) analyses in Northwest China, Energy Conversion and Management, 232, 113899.
53. Q. Lu, X.H. Zou, C. Wang, K.M. Liao, P. Tan, R. Ran, W. Zhou, M. Ni, Z.P. Shao, 2021, Tailoring Charge and Mass Transport in Cation/Anion-codoped Ni3N / N-doped CNT Integrated Electrode toward Rapid Oxygen Evolution for Fast-Charging Zinc-Air Batteries, Energy Storage Materials, 39, 11–20.
52. H.R. Xu, J.B. Ma, P. Tan, Z. Wu, Y.X. Zhang, M. Ni, J. Xuan, 2021, Enabling thermal-neutral electrolysis for CO2-to-fuel conversions with a hybrid deep learning strategy, Energy Conversion and Management, 230, 113827.
51. Y.W. Dai, J. Yu, Z.B. Zhang, C. Cheng, P. Tan, Z.P. Shao, M. Ni, 2021, Interfacial La Diffusion in the CeO2/LaFeO3 Hybrid for Enhanced Oxygen Evolution Activity, ACS Applied Materials & Interfaces, 13 (2), 2799-2806.
50. C. Cheng, S.J. Wang, P. Tan, Y.W. Dai, J. Yu, R. Cheng, S.P. Feng, M. Ni, 2021, Insights into the Thermopower of Thermally Regenerative Electrochemical Cycle for Low Grade Heat Harvesting, ACS Energy Letters, 6, 329-336.
49. F.H. Li, Y.G. Wei, P. Tan, Y.K. Zeng, Y.P. Yuan, 2020, Numerical investigations of effects of the interdigitated channel spacing on overall performance of vanadium redox flow batteries, Journal of Energy Storage, 32, 101781.
48. Z. Wu, P.F. Zhu, J. Yao, P. Tan, H.R. Xu, B. Chen, F.S. Yang, M. Ni, 2020, Dynamic modeling and operation strategy of natural gas fueled SOFC-Engine hybrid power system with hydrogen addition by metal hydride for vehicle applications, eTransportation, 5, 100074.
47. Q. Lu, Y.N. Guo, P. Mao, K.M. Liao, X.H. Zou, J. Dai, P. Tan, R. Ran, W. Zhou, M. Ni, Z.P. Shao, 2020, Rich atomic interfaces between sub-1 nm RuOx clusters and porous Co3O4 nanosheets boost oxygen electrocatalysis bifunctionality for advanced Zn-air batteries, Energy Storage Materials, 32, 20-29.
46. Y.W. Dai, J. Yu, C. Cheng, P. Tan, M. Ni, 2020, Mini-review of perovskite oxides as oxygen electrocatalysts for rechargeable zinc–air batteries, Chemical Engineering Journal, 397, 125516.
45. H. Xu, J. Ma, P. Tan, B. Chen, Z. Wu, Y. Zhang, H. Wang, J. Xuan, M. Ni, 2020, Towards online optimisation of solid oxide fuel cell performance: Combining deep learning with multi-physics simulation, Energy and AI, 1, 100003.
44. Y. Dai, J. Yu, C. Cheng, P. Tan, M. Ni, 2020, Engineering the interfaces in water-splitting photoelectrodes – an overview of the technique development, Journal of Materials Chemistry A, 8, 6984-7002.
43. H. Yan, G. Wang, Z. Lu, P. Tan, T. H. Kwan, H. Xu, B. Chen, M. Ni, Z. Wu, 2020, Techno-economic evaluation and technology roadmap of the MWe-scale SOFC-PEMFC hybrid fuel cell system for clean power generation, Journal of Cleaner Production, 255, 12022.
42. Z. Wu, P. Zhu, J. Yao, P. Tan, H. Xu, B. Chen, F. Yang, Z. Zhang, M. Ni, 2020, Thermo-economic modeling and analysis of an NG-fueled SOFC-WGS-TSA-PEMFC hybrid energy conversion system for stationary electricity power generation, Energy, 192, 116613.
41. Q. Lu, J. Yu, X. Zou, K. Liao, P. Tan, W. Zhou, M. Ni, Z. Shao, 2019, Self‐Catalyzed Growth of Co, N‐Codoped CNTs on Carbon‐Encased CoSx Surface: A Noble‐Metal‐Free Bifunctional Oxygen Electrocatalyst for Flexible Solid Zn–Air Batteries, Advanced Functional Materials, 29, 1904481.
40. H.R. Xu, B. Chen, P. Tan, Y. Zhang, Q. He, Z. Wu, M. Ni, 2019, The thermal effects of all porous solid oxide fuel cells, Journal of Power Sources, 440, 227102.
39. B. Chen, H. Xu, Y. Zhang, F. Dong, P. Tan, T. Zhao, M. Ni, 2019, Combined methane reforming by carbon dioxide and steam in proton conducting solid oxide fuel cells for syngas/power co-generation, International Journal of Hydrogen Energy, 44, 15313–15321.
38. Z. Wu, P. Tan, P. Zhu, W. Cai, B. Chen, F. Yang, M. Ni, 2019, Performance analysis of a novel SOFC-HCCI engine hybrid system coupled with metal hydride reactor for H2 addition by waste heat recovery, Energy Conversion and Management, 191, 119–131.
37. Z. Wu, P. Tan, B. Chen, W. Cai, M. Chen, X. Xu, M. Ni, 2019, Dynamic modeling and operation strategy of an NG-fueled SOFC-WGS-TSA-PEMFC hybrid energy conversion system for fuel cell vehicle by using MATLAB/SIMULINK, Energy, 175, 567–579
36. H.R. Xu, B. Chen, P. Tan, Q. Sun, M. M. Maroto-Valer, M. Ni, 2019, Modelling of a hybrid system for on-site power generation from solar fuels, Applied Energy, 240, 709–718
35. B. Chen, H.R. Xu, P. Tan, Y. Zhang, X. Xu, W. Cai, M. Chen, M. Ni, 2019, Thermal modelling of ethanol-fuelled Solid Oxide Fuel Cells, Applied Energy, 237, 476–486
34. H.R. Xu, B. Chen, P. Tan, J. Xuan, M. M. Maroto-Valer, M. Ni, 2019, Modeling of all-porous solid oxide fuel cells with a focus on the electrolyte porosity design, Applied Energy, 235, 602–611.
33. H.R. Xu, B. Chen, P. Tan, W.Z. Cai, W. He, Y.Y. Wu, H.C. Zhang, M. Ni, 2018, A feasible way to handle the heat management of direct carbon solid oxide fuel cells, Applied Energy, 226, 881–890.
32. H.R. Xu, B. Chen, P. Tan, W.Z. Cai, W. He, D. Farrusseng, M. Ni, 2018, Modeling of all porous solid oxide fuel cells, Applied Energy, 219, 105–113.
31. H.R. Xu, B. Chen, H. Zhang, P. Tan, G.M. Yang, J. T.S. Irvine, M. Ni, 2018, Experimental and modeling study of high performance direct carbon solid oxide fuel cell with in situ catalytic steam-carbon gasification reaction, Journal of Power Sources, 382, 135–143.
30. Z.M. Yang, H.R. Xu, B. Chen, P. Tan, H.C. Zhang, M. Ni, 2018, Numerical modeling of a cogeneration system based on a direct carbon solid oxide fuel cell and a thermophotovoltaic cell, Energy Conversion and Management, 171, 279–286.
29. B. Chen, H.R Xu, Q. Sun, H.C. Zhang, P. Tan, W.Z. Cai, W. He, M. Ni, 2018, Syngas/power cogeneration from proton conducting solid oxide fuel cells assisted by dry methane reforming: A thermal-electrochemical modelling study, Energy Conversion and Management, 167, 37–44.
28. H.R. Xu, B. Chen, P. Tan, H. Zhang, J. Yuan, J. T.S. Irvine, M. Ni, 2018, Performance improvement of a direct carbon solid oxide fuel cell through integrating an Otto heat engine, Energy Conversion and Management, 165, 761–770.
27. B. Chen, H.R. Xu, H.C. Zhang, P. Tan, W.Z. Cai, M. Ni, 2017, A novel design of solid oxide electrolyzer for hydrogen generation and storage integrating magnesium hydride bed - A dynamic simulation study, Applied Energy, 200, 206-272.
26. Y.X. Ren, T.S. Zhao, P. Tan, Z. H. Wei, X. L. Zhou, 2017, Modeling of an aprotic Li-O2 battery incorporating multiple-step reactions, Applied Energy, 187, 706–716.
25. R.H. Zhang, T.S. Zhao, P. Tan, M.C. Wu, H.R. Jiang, 2017, Ruthenium dioxide-decorated carbonized tubular polypyrrole as a bifunctional catalyst for non-aqueous lithium-oxygen batteries, Electrochimica Acta, 257, 281–289.
24. H.R. Xu, H.C. Zhang, B. Chen, P. Tan, J.L. Yuan, J. Liu; M. Ni, 2017, Performance improvement of a direct carbon solid oxide fuel cell system by combining with a Stirling cycle, Energy, 140, 979–987.
23. R.H. Zhang, T.S. Zhao, M.C. Wu, P. Tan, H.R. Jiang, 2017, Paramecium-like Fe2O3 nanotubes as a cost-efficient catalyst for non-aqueous Li-O2 batteries, Energy Technology, 6, 263–272
22. X.B. Zhu, T.S. Zhao, P. Tan, Z.H. Wei, M.C. Wu, 2016, A high-performance solid-state lithium-oxygen battery with a ceramic-carbon nanostructured electrode, Nano Energy, 26, 565–576.
21. Y.X. Ren, T.S. Zhao, M. Liu, P. Tan, Y.K. Zeng, 2016, Modeling of lithium-sulfur batteries incorporating the effect of Li2S precipitation, Journal of Power Sources, 336, 115–125.
20. C.Y. Jung, T.S. Zhao, L. Zeng, P. Tan, 2016, Vertically aligned carbon nanotube-ruthenium dioxide core-shell cathode for non-aqueous lithium-oxygen batteries, Journal of Power Sources, 331, 82–90.
19. Z.H. Wei, T.S. Zhao, X.B. Zhu, P. Tan, 2016, MnO2-x nanosheets on stainless steel felt as a carbon- and binder-free cathode for non-aqueous lithium-oxygen batteries, Journal of Power Sources, 306, 724–732.
18. Y.Y. Huang, T.S. Zhao, L. Zeng, P. Tan, J.B. Xu, 2016, A facile approach for preparation of highly dispersed platinum-copper/carbon nanocatalyst toward formic acid electro-oxidation, Electrochimica Acta, 190, 956–963.
17. M.C. Wu, T.S. Zhao, P. Tan, H.R. Jiang, X.B. Zhu, 2016, Cost-effective carbon supported Fe2O3 nanoparticles as an efficient catalyst for non-aqueous lithium-oxygen batteries, Electrochimica Acta, 211, 545–551.
16. H.R. Jiang, P. Tan, M. Liu, Y.K. Zeng, T.S. Zhao, 2016, Unraveling the positive roles of point defects on carbon surfaces in nonaqueous lithium-oxygen batteries, Journal of Physical Chemistry C, 120, 18394–18402.
15. H.R. Jiang, T.S. Zhao, L. Shi, P. Tan, L. An, 2016, First-principles study of nitrogen-, boron-doped graphene and co-doped graphene as the potential catalysts in non-aqueous Li-O2 batteries, Journal of Physical Chemistry C, 120, 6612–6618.
14. X.B. Zhu, T.S. Zhao, Z.H. Wei, P. Tan, L. An, 2015, A high-rate and long cycle life solid-state lithium-air battery, Energy & Environmental Science, 8, 3745–3754.
13. X.B. Zhu, T.S. Zhao, Z.H. Wei, P. Tan, G. Zhao, 2015, A novel solid-state Li-O2 battery with an integrated electrolyte and cathode structure, Energy & Environmental Science, 8, 2782–2790.
12. L. An, T.S. Zhao, X. Yan, X. Zhou, P. Tan, 2015, The dual role of hydrogen peroxide in fuel cells, Science Bulletin, 60, 55–64.
11. Z.H. Wei, T.S. Zhao, X.B. Zhu, L. An, P. Tan, 2015, Integrated porous cathode made of pure perovskite lanthanum nickel oxide for nonaqueous lithium-oxygen batteries, Energy Technology, 3, 1093–1100.
10. Z.H. Wei, P. Tan, L. An, T.S. Zhao, 2014, A non-carbon cathode electrode for lithium–oxygen batteries, Applied Energy, 60, 134–138.
9. T.R. Fu, P. Tan, J. Ren, H.S. Wang, 2014, Total hemispherical radiation properties of oxidized nickel at high temperatures, Corrosion Science, 83, 272–280.
8. L. An, T.S. Zhao, Z.H. Chai, P. Tan, L. Zeng, 2014, Mathematical modeling of an anion-exchange membrane water electrolyzer for hydrogen production, International Journal of Hydrogen Energy, 39, 19869–19876.
7. L. An, T.S. Zhao, Z.H. Chai, L. Zeng, P. Tan, 2014, Modeling of the mixed potential in hydrogen peroxide-based fuel cells, International Journal of Hydrogen Energy, 39, 7407–7416.
6. T.R. Fu, P. Tan, M.H. Duan, 2014, Simultaneous measurements of high-temperature total hemispherical emissivity and thermal conductivity using a steady-state calorimetric technique, Measurement Science and Technology, 26, 015003.
5. L. An, Z.H. Chai, L. Zeng, P. Tan, T.S. Zhao, 2013, Mathematical modeling of alkaline direct ethanol fuel cells, International Journal of Hydrogen Energy, 38, 14067–14075.
4. T.R. Fu, P. Tan, M.H. Zhong, 2012, Experimental research on the influence of surface conditions on the total hemispherical emissivity of iron-based alloys, Experimental Thermal and Fluid Science, 40, 159–167.
3. T.R. Fu, P. Tan, 2012, Transient calorimetric measurement methods for total hemispherical emissivity, Journal of Heat Transfer-Transactions of the ASME, 134, 111601.
2. T.R. Fu, P. Tan, C.H. Pang, 2012, A steady-state measurement system for total hemispherical emissivity, Measurement Science and Technology, 23, 025006.
1. T.R. Fu, P. Tan, C.H. Pang, H. Zhao, Y. Shen, 2011, Fast fiber-optic multi-wavelength pyrometer, Review of Scientific Instruments, 82, 064902.